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Abstract. A standard thermodynamic theory of energy conversion is corrected by including 
the return fluxes from the sink to the converter and from the converter to the pump. By 
also allowing for the limited solid angle subtended by the pump at the converter and for 
general photon distributions (not only black-body), one obtains a better theory than has 
so far been available. It yields maximum conversion efficiencies as a function of solid 
angles and entropy generation rates. Comparison is made with earlier work where available. 

1. Introduction 

The thermodynamic efficiency of energy conversion of radiation into other forms of 
energy is of wide interest and has been much discussed. The work up to 1979 has 
been reviewed in [l] .  In the 1980s these studies have continued in the area of 
photovoltaics, photochemistry and photobiology. 

Here we shall consider a system consisting of two large reservoirs called pump (p)  
and sink (s) together with a converter (c). The last interacts with the pump by 
interchange of isotropic radiation and with the sink by isotropic radiation and possibly 
by other means so as to exchange work and heat. If the converter takes in black-body 
radiation at temperature Tp from the pump and rejects black-body radiation at a 
temperature marginally above the sink temperature T,, then an upper limit to the 
conversion efficiency is [ 2,3] 

T,- T,. (1.1) 

(1.2) 

(1.3) 
The expression (1.1) assumes that the pump surrounds the converter completely (the 
so-called 4~-geometry)  and that the entropy generation rate can be neglected, assump- 
tions which will both be discarded here. For example, the validity of ( l . l ) ,  even when 
the pump does not completely surround the converter, is established in (3.7), below, 
The expressions (1.1) and (1.2) are still very much higher than observed efficiencies. 

B On leave at Ambassade de France, 11453 Stockholm, Sweden. 
11 Laboratoire Associi au CNRS. 

TL = 1-3 3(  Ts/ Tp) +4( T,/ TPl4 

~c = 1 - T,/ Tp. 

This lies below the Carnot efficiency 

Throughout our work we shall assume 
Tp 3 T, s T, . 

0305-4470/89/111911+ 16$02.50 @ 1989 IOP Publishing Ltd 1911 
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The question has recently been raised [4] as to how ( 1 . 1 )  has to be amended to 
allow for the fact that the pump normally subtends a limited solid angle at the absorber, 
and how to allow for the cut-off energy E ,  below which an absorber such as a 
photovoltaic cell cannot absorb. Here E,  is the semiconductor energy gap. These 
effects change the efficiency. If one limits the solid angle at E,=O the efficiency is 
lowered; if one introduces a band gap at the full solid angle of 4.rr one also lowers 
the efficiency. If, however, a band gap is introduced at a solid angle less than 41r the 
efficiency as a function of E,  goes through a maximum (see for example [ 5 ] ) .  Our 
appreciation of [4] is in no way diminished by the fact that we believe the answers 
obtained in [4] are in need of correction. For when all of the fluxes in the problem 
are correctly taken into account, as in (2.3) below, a strange result of [4] 

17t= 1 -~ (Ts /Tp)+(1 /3g) (Ts /~p)4  (1.4) 
is removed. Here g is a geometrical factor which goes to zero if the pump subtends 
zero solid angle at the absorber. One would want (1.4) to remain finite as g + 0. 

In this paper we give a rather general formulation (0 2) of energy conversion theory 
which applies in principle to all incident spectra and all angles subtended by the pump 
and sink. In this way one can recover many of the results in the literature in a novel 
way, and obtain new results as well. The theory is then specialised to the case when 
all radiation involved is black-body (§ 3 )  or monochromatic (§ 4). We show that the 
results obtained through our general thermodynamic formulation are consistent with 
those obtained in special cases through a kinetic rate process approach (e.g. [ 6 ] ) .  

2. General theory 

2.1. The balance equations 

Including the entropy generation S,  per unit area in the converter, the net energy and 
entropy fluxes received by the converter are respectively (figure 1 )  

(2.1) 

(2.2) 

rbb" = r b p c -  0- rbcs- *+ 4 s c -  r b c p  

Ts*?= T s * p c -  Q- Ts*cs+ TS&+ T s * s c -  T A , .  

Figure 1. The system considered here, showing converter, pump and sink. Our analysis 
neglects the heat conduction which is shown for completeness. 
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Here T, is the temperature of the ambient and of the surface of the converter so that 
the entropy flux emitted by the converter in the form of a heat flux is Q/ T,. We call 
T, the sink temperature. The suffix pc denotes fluxes from the pump to the converter 
and cs fluxes from the converter to the sink. These terms and the work flux W are 
the usual ones. However, one also has to consider the return fluxes from sink to 
converter (sc) and from the converter to the pump (cp). These are not normally 
considered. Apart from 0, W and S, ,  which can incorporate heat conduction, all of 
the terms on the right of (2.1) and (2.2) are radiative terms. Taking the difference 
between these equations, 

The main (normal) terms are in the first line; the (new) return fluxes are in the second 
line. Terms in the third line to be denoted collectively by A are often neglected. 

2.2. Geometrical considerations 

The total emitted fluxes by component j ( j  = p, c, s) are 

4hv3 
VJ c~ "vi 

K .=- 4i = 11 K, cos 0, dv dRj 

+bj = I/ L, cos 19, dv dR 

l.kv2 
L Y . = - [ ( 1 + n V j )  c2 h ( l + n V j ) - n v j  In nvj]. 

Here I j  = 1 or 2 is a polarisation factor for polarised and unpolarised radiation respec- 
tively. The spectral energy and entropy radiances are denoted by K, and L, respec- 
tively. The nvj are the photon numbers of frequency v present in componentj. Planck's 
constant ( h )  and the velocity of light (c )  also occur. The approach and notation is 
that of [ 11. 

Assume now that all elementary areas of the radiating part of the surface of 
component j have the same properties and that the surface is Lambertian so that the 
radiances are independent of direction within the solid angle Rj. This latter assumption 
is rather stringent and fails for lasers. The subsequent work therefore holds only for 
Lambertian devices although the photon distributions nvj are otherwise arbitrary. 
Hence for any surface element of the radiating surface of component j the fluxes 
emitted are 

Gj = Bj L ,  dv (2.6) I +i = Bj K ,  du I 
I,; 

where 

B ~ =  COS e j m i  

and Rj  is the solid angle for which emission is possible. 
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Without loss of generality we can assume that nvj depends on the parameter 
x, = h v /  kT, where kT, is a normalising constant for component j .  Temperatures T, are 
arbitrary, but if nvj is a black-body distribution, then TJ has to be interpreted as the 
black-body temperature. We shall put for simplicity n Y j ( x j )  = nj. Substituting (2 .4)  
and ( 2 . 5 )  into ( 2 . 6 )  we obtain 

where Stefan’s constant U = 2rr5k4/ 15h3c2 and the dimensionless integrals (x = h v /  k T )  

J (  n,) = x’[ln( 1 + nJ) + n, In( 1 + n ; ’ ) ]  dx I I ( n J )  = x3nJ dx I 
have been introduced. 

2.3. Balance equations including geometric eflects 

In applying the above results to the fluxes 4y, $,, between components i and j of the 
device, one must replace the B, by B,J. Also, the total solid angle accessible for emission 
from the converter is now split into two parts according to whether the individual 
‘rays’ reach the pump or the sink. Using also the reversibility of the rays 

B c k  = B k c  k = s , p  ( 2 . 1 0 ~ )  

BT = B,, + B,, . ( 2 . 1 0 b )  

( 2 . 1 0 ~ )  is called the reciprocity relation, and is discussed in books on heat transfer 
and optics and goes back to Helmholtz [7]. Here BT corresponds to the total solid 
angle accessible to the converter. For a flat surface it is 2 7 ~ .  For a flat plate with both 
sides radiating it is 471. For a simply connected closed radiating surface it is again 471. 

2.4. Results for  the steady state 

In this case ( 2 . 1 )  and ( 2 . 2 )  vanish and we can use (2.3) and (2 .7) - (2 .10)  to give the 
work flux delivered by the converter. Two equivalent expressions are given: 

- W =  B,,[ l ,T~Z(n,)- l ,T~T,J(n,)]+B, ,[~,T~Z(n,)-I ,T~J(n,) l  
15u 
27Ts 

2 r 5  * 

- BT[ IC cz ( n c )  - IC T f  T s J (  n c )  1 -- Tssg (2 .11)  
1% 

~ ~ , , ~ ~ , ~ ~ ~ ~ ~ , ~ - ~ , ~ ~ ~ , J ~ ~ , ~ - ~ , ~ ~ ~ ~ , ~ + ~ , ~ ~ J ~ ~ , ~ 1  
2 ,2  

- BT[ 1, TdI( n,) - 1, Tz T,J( n,) - 1, T:Z( n,) + I ,  T : J ( n , ) ]  -- T&. 
15a 

(2.12) 

Relation (2 .11)  is more symmetrical between B,, and B,, and shows that by virtue of 
the second row of terms in (2.3) the sink acts as a (usually weaker) extra pump. 
Complete symmetry in these expressions is not expected since the heat flux 0 is 
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preferentially associated with the sink temperature T,. The coefficients B,, and B,, 
refer to direct radiative exchanges between pump and sink without affecting the 
converter, and they are therefore not needed here. 

We now use an earlier idea [ S ]  which is also useful in the analysis of a solar cell 
as a Carnot engine [ 9 ] .  Regard the entropy generation as taking place in a Lambertian 
converter coupled to a reversibly acting Carnot engine, and make the device equivalent 
to the one considered so far (figure 2). The rate of working of the Carnot engine is 
determined by the net radiative input: 

W = [ 1  - ( Ts/ T c ) I [ 4 p c  - 4 c p -  (des- 4JI 
i.e. 

(2.13) - W = [ 1  ~ ~ ~ ~ / ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p ~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~  15a 

The entropy generation flux in the absorber is now found by equating (2.11) and (2.13), 
a procedure introduced in [ 8 ] ,  

2 7T5 

2m5 - s g =  [ B p c l p c I ( n p ) +  B c s k c I ( n s )  -BTlcT:I(nc)I(l/ T c )  1 5 a  

- Bp,I,T3,J(n,) - B , , I , T ~ J ( n , ) +  BTI,T3,J(n,). 

The efficiency of work production is best defined by 

77 = W / & C  

which is the ratio of two fluxes. Use of (2.7) and (2.11) yields 

BT 

(2.14) 

(2.15) 

2 7 ~ ’  T,S, 
x [l, cZ( n,) - l,T; T,J( nc )  - I ,  T t I (  n,) + l,T:J( n,)] - 

1 5 B P 4  T4,1(np) * 
(2.16) 

Figure 2. A model of the converter conceived as consisting of a radiator R and a Carnot 
engine. 
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The result (2.16) is based on figure 1 .  If figure 2 is used, one has from (2.13) 

The difference between (2.12) and (2.13) and between (2.15) and (2.16) will be seen 
to be important in 8 3.  

Lastly, observe that the current-voltage ( j ,  V)-relation of the device can be obtained 
from (2.13) by replacing W by j (  V): 

[ B,,/,  T;Z( n,) + B,,l, T:Z( n,)  - BTI, CI(  n , ) ] .  (2.18) 

For solar cells, even if completely surrounded by the pump, we shall see in (4.7) that 
(2.19) q v  = E*( 1 - Ts/ Tc) 

so that the voltage dependence on the right-hand side of (2.18) is then determined by 
the voltage dependence of the photon distribution. 

2.5. Special cases 

As a first example of the preceding results, consider the case where pump, converter 
and sink are in equilibrium. Then the three T, become one and the same real temperature 
of black-body distributions. The I ,  all have the value 2 and the integrals (2.9) do not 
depend on j .  Hence the entropy generation rate per unit area, (2.14), vanishes by 
virtue of (2.10b). Also, W vanishes, as is to be expected. 

A less stringent constraint is that of zero power output (open circuit). While W = 0 
as before in that case, the integrals (2.9) still depend on j and non-zero entropy 
generation is expected since the incident photons are converted into emitted photons. 
Given the three Bj and the three normalising temperatures T,, the zero-work condition 
is a constraint on the non-equilibrium steady-state photon distribution in the converter. 
By (2.13) and using figure 1,  n, must satisfy 

(2.20) 

Since Q and W do not appear, this is a condition for a purely radiative steady state 
in which the three distributions nj and parameters T, are linked by (2.20). 

The coefficient of B,, in (2.12) is normally positive (since Tp>> T,). The power 
output of the device then increases with the transfer coefficient B,, (other things being 
equal), as would be expected. On the other hand, B,, cannot be decreased indefinitely 
since W 2 0  is a constraint for an engine (as contrasted with a heat pump). This 
imposes a least value for B,, and it ensures that the efficiencies (2.15)-(2.17) cannot 
diverge. From (2.12) and (2.13) one finds 

or 
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Assuming black-body radiation, (2.22) gives as a condition for operation as a heat 
engine 

c- T: c- ( B p c l m i n  = Bcs - (2.23) 

Thus the minimum permitted value of B,, depends on the thermal details of the device 
and is zero in the case of black-body radiation when the converter temperature becomes 
identical with that of the sink. 

3. The case of black-body radiation 

3.1. General 

In this section the radiation in the three components (pump, converter and sink) of 
the device will be assumed to be black-body. Because of the extra terms in (2.3), this 
will give generalisations of results already in the literature. In this section we shall 
use: (i)  the same polarisation factor (1) for all components; (ii) 

I( nj) = 7r4/ 15 J( nj) = 47r4/45 (3.1) 

a = T,/ Tp b= Tc/T,  T, s T, s Tp (3.2) 

and (iii) 

so that 

O s a s b < l  O G r S l ,  

The last condition follows from (2.10). 

3.2. Use ofjgure 1 only 

From (2.12) and (2.16) we have 

(3.3) 

(3.5) 

If the converter is completely surrounded by pump radiation, then r = 1 and (3.5) is 
equation (7) or [lo] on which the inequalities 

(3.6) 77 6 1 - b4-$a(l  -b3)‘ T * <  1 -$a+1 4 =  
3a - 7 ) L  

were based. The last form is found in the limiting case b + a, i.e. Tc+ T,. In the other 
limiting case of no pump radiation ( r  + 0), the steady state enforces T, = T, ( a  = b), 
and this means that a divergence is avoided in (3.5). 

The ‘Landsberg efficiency’ qL [4,11] can be obtained in a novel manner by 
factorising the first two expressions in (3.5). In order to achieve an inequality we 
neglect S,  : 

1 
3 r  

7 s f (  a - 1 )’(a’+ 2a + 3) -7 ( b  - ~ ~ ) ~ ( 3 b ’ +  2ba + a 2 )  s qL. (3.7) 
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The last step is obtained by maximising the central expression by putting b = a. Thus 
vl. is a valid upper limit of the efficiency as based on figure 1 even if the pump does 
not completely surround the converter. 

It must be appreciated that T, and also the voltage V across the cell depend on 
the work flux W extracted from it. We shall put T,= T,( W )  and later V =  V( W ) .  In 
the open-circuit case, equation (2.20), which is based on figure 2, shows that for 
black-body radiation 

(3.8) b + b(0 )  = T,(O)/ Tp 

b ( ~ ) ~ =  r 4 + ( 1  - r4)a4.  

where 

Thus if the converter communicates only with the pump, then r = 1 and T,(O) = Tp. 
If it communicates only with the sink, then r = 0 and T,(O) = T,, cf equation (2.23). 
A similar argument based on figure 1,  i.e. on (3.4), should give the same result if the 
entropy generation rate (2.14) is used. The present procedure can therefore be regarded 
as based on either figure 1 or figure 2. From (3.8) 

b ( ~ ) ~ =  a 4 + ( i  - a 4 ) r 4 +  a4 if r = 0. (3.9) 
For simplicity we shall write bo instead of b ( 0 )  below. 

Note that (2.23) gives as a condition for operation of the device as a heat engine that 

b4<  a 4 + ( l  - a 4 ) r 4 =  b:. (3.10) 

3.2. The model of Jigure 2 

For unpolarised black-body radiation, using (2.13), (2.17) and (3.8), 

(3.11) 

From (3.9) and (3.11) one sees that b 0 s  b. The efficiency vanishes in three different 
situations. 

(i)  If Tp= T,, which implies via (3.8) that all three temperatures are equal; the 
system is then in thermal equilibrium. 

(ii) If T, = T,, which means that the Carnot engine in figure 2 cannot produce work. 
(iii) If T, = T,(O), which corresponds to the open-circuit, purely radiative, non- 

equilibrium steady state (2.20). 
Starting with open circuit, as one draws work from the device T, drops from T,(O) 

and 7 rises from zero. Eventually, T, reaches T,( a = b )  from above T, and 7 reaches 
zero again, as illustrated in figures 3 and 4. Between its zeros 7 reaches its maximum 
with respect to b, at b = b, Tcm/ Tp, say. This is given by (figure 5 )  

(3.12) 

The changes in efficiency as b = T,/ Tp rises from its lowest value, a, to its highest 
value, bo, are illustrated in figures 3 and 4. One sees 

Tc(0) 3 Tcm i.e. bo 5 b,. (3.13) 
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\/"" , b=T, / T p  

0 0.10 0.15 0.20 
b 

Figure 3. The efficiency as a function of b, assuming a = 300/6000 = 0.05, r4 = Bpc/ BT = 
2.17 x lo-' C (see equations (A3) and (AS)), where the concentration ratio C is taken to 
be 1 and 100. This yields bo=0.0726 and 0.216 via (3.8) and hence 1) by (3.11). The 
maximum efficiencies are 0.12 and 0.54. 

b = T , / T ,  

Figure 4. A family of curves 7) against b for a = 0.05 according to (3.11). All curves rise 
from (7 = 0, b = a )  and end at (7  = 0, b = bo). From (A3) and (A5) the concentration 
ratios are, in order of increasing bo, 4.33, 73.9, 1182, 5983, 18 909 and 46 164. 

A key point, noted already in connection with (1.4), is that the maximum conversion 
efficiency is expected to increase with the pump-converter transfer coefficient, i.e. with 
the solid angle entering B,, (see equation (2.6)). This is confirmed by figure 5 where 
increases in bo represent increases in r4 = Bpc/ BT. This clears up some confusion in 
the literature [4,12]. 

Both the T~ curve and the ( b o =  1) curve of figure 6 correspond to the converter 
being surrounded by the pump radiation. They differ because qL is based on figure 1 
and is an upper limit to the efficiency owing to the neglect of S,. The (bo = 1) curve, 
on the other hand, is based on figure 2. Here S,  has been incorporated in the action 
of the radiator R and so does not have to be neglected. Since it incorporates the effect 
of S,  on the efficiency, it lies lower. 
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1.0 

- 

0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Curves showing how b ,  rises from zero to bo as a is increased, plotted for various 
values of bo using (3.12). At the end points of the curves b, = bo = a. The values of bo 
are marked on the curves. 

U ;  TI / T p  

Figure 6. Maximum conversion efficiencies v,,, as a function of a;  qc, q L  are the efficiencies 
(1.1) and (1.2). The remaining five curves give our new efficiency (3.11) with the value 
b = 6, given by (3.12) and shown in figure 5 .  The values of bo used are marked on the curves. 

We do not show 77 of (3.11) as a function of a by a diagram for the case when the 

(3.14) 

and one finds the falling straight lines, denoted 772 in [8]. Relation (3.14) was given 
early on and its history has been briefly reviewed [13]. It has been championed by 
Jeter [ l l ]  and Castaiis [14], and it has also been used in [8] and elsewhere. In the 
present paper this much discussed result appears in the generalised form (3.11).  If 
the assumption of black-body radiation is dropped, it appears in the even more general 
form (2.17). A controversy concerning various efficiency formulae in [ l l ,  131 may be 
of interest in this context. 

One should also recognise (3.12) as a generalisation to bo# 1 of the well known 
quintic equation [lo, 141 for the value T,,, say, of T,: 

(3.15) 

pump surrounds the converter (bo = 1 by (3.8)). In that case 

77 = (1  - a /  b)(l - b4) 

4Tz, - 3 T,TO!,, - TsT4, = 0 

which maximises (3.14) with respect to b. 
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0. 

&XI@- 

'W, = 
L 

2x10.'- 

\ - -=  

b = o ]  b=boj 

- 
1 1 1 1 1 1 I I I  

Figure 7. The minimum entropy generation flux for C = 1, a = 0.05, r4 = 2.17 x as a 
function of b using (3.8) and (3.20). Heat engine operation extends from b = Q to b = bo. 

3.3. The entropy-generation rate 

The entropy generation flux is by (2.14), using the notation (3.2), 

r4 (1 - r ' )~ '  s =-+ -x[r  + a3( 1 - r')] +fb'  
217 

luBTT; ' b b 

= o + f b 3  b4 _ _  4 (1+a+a2)b :+a3  
b 3 ( 1 + a ) ( l + a 2 )  * 

(3.16) 

(3.17) 

For r = 1 (BT = T ,  I = 2), one obtains the familiar result of [ 101 which was derived in 
a more general form as equation (12) of [8]: 

1 .  1 4 b 3  -s =---+- 
U T ~  b 3 3 '  

(3.18) 

The entropy generation rate in the converter is then independent of the sink. On the 
other hand, if r = 0 and the sink is the only pump, then one finds by virtue of the extra 
terms in (2.3) that 

(3.19) 

In thermal equilibrium ( a  = b = 1) the expressions (3.16)-(3.19) vanish, as they should. 
The entropy generation rate (3.17) can be minimised with respect to b (i.e. T,). 

The minimum rate occurs, as expected, for the open-circuit condition b = bo of (3.8). 
The minimum rate is given by 

317 ( l + b o + b i + b :  
( S )  -(l-bO) b;+ 1 + a  + a 2 + a 3  m'n - 

2!aBTT; (3.20) 

It vanishes when the pump radiation surrounds the converter ( r  = 1, i.e. bo= l),  but is 
positive in other cases, as seen in figure 7. Note that the device operates as a heat 
engine only for b S bo, by virtue of (3.10). 

4. Black-body radiation: the monochromatic case 

If the converter is surrounded by filters which pass only black-body photons in a 
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narrow frequency range (U, U + A V ) ,  then the integrals (2.9) become 

4 x:Ax, x 
3 exp(x,)-1 3 J (  n,) + J ( x , )  = - + I l n [ l  -exp(-x,)]. 

Using the model of figure 2, (2.13) or (2.18) specialise to 

The energy and entropy exchanges are made only through photons of energy hu so 
that the system is monochromatic. The interesting point is that its behaviour can be 
shown to be identical to that of a two-level quantum system as described by both of 
us in different ways as models for a solar cell [15,16]. 

If in (4.3) W = O  (open circuit), then the temperatures T p ,  T, ,  T,(O) are related by 
[ & O S  hv/kT,(O)l 

where Tp and T, are taken as fixed, while T, is a function of ri! As in (3.3),  the suffix 
0 refers to open-circuit conditions. T,, as given by (4.4), is the steady-state temperature 
which a monochromatic absorber with the configuration of figure 2 would attain if 
only radiative exchanges occur. If the sink term is neglected in (4.4), one finds 

This equation has been used in the context of photosynthesis [17]. 
For the application to photovoltaic conversion one models the converter as a 

semiconductor with an energy gap E,  = hu illuminated through monochromatic filters. 
Such a converter is equivalent to a two-level quantum system with the lattice at the 
sink temperature T,.  The semiconductor emits radiation with a broad spectrum by 
virtue of electron-hole pair radiative recombination. This spectrum is roughly black- 
body with a cutoff at hv = E, ,  defined by a generalised Kirchhoff law [ 181. The three 
terms in large brackets in (4.3) represent respectively the current induced by the pump, 
the current induced by radiation from the sink and the current loss due to re-radiation 
from the converter. 

If w e ,  p h  are the quasi-Fermi levels of electrons and holes (assumed flat) and 
qV( W )  = pe - p h  is the terminal voltage of the device, the re-radiated spectrum can be 
related to the sink temperature: 

( E , - q V (  W ) ) / k T , = h v / k T , (  W )  (4.6) 
which has been justified elsewhere, for example in [S, 10, 15, 19,201. It leads to a 
Carnot efficiency of type (1.2) for the Carnot engine of figure 2 

In fact, it can be shown [9] that the operation of an ideal photovoltaic converter can 
be described in terms of a Carnot cycle of an electron-hole plasma between T, and T,.  
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In the case of open circuit (4.4) with (4.6) is equivalent to 
r4 1 - r 4  + (4.8) - - 1 

exp[(E,-qV~,)/kT~]- 1 exp(E,/kT,)- 1 exp(E,/kTs)- 1 '  
This enables one to determine Vac in terms of Tp and T,. An approximate solution of 
(4.8) (which involves the same approximation as (4.5)) is 

(4.9) 

These equations have been obtained in [ 151 by a detailed balance argument. The two 
approaches are therefore in agreement. 

The current density-voltage relation of the device can be obtained from (4.3) and 
(4.7), with A an appropriate factor, as 

) .  (4.10) 
1 - r4 1 + r4 

exp( E,/ kTp) - 1 
j( V) = - = A 

exp( EB/ kT,) - exp[ (E, - q 7 ) /  kT,] - 1 
Similar equations have been obtained in a different way and for r = 1 by other authors, 
for example [21,22]. By (4.4) and (4.6) we have 

If the electron-hole gas is non-degenerate, (E, - qV)/ kT, >> 1,  then a good approxi- 
mation to (4.11) is 

(4.12) 

which is equivalent to the standard ideal diode characteristic. The usual short circuit 
and dark current can reagily be obtained from (4.12). 

The discussion in this section shows that a largely thermodynamic derivation of 
the two-level photovoltaic converter gives the same results as an approach based on 
transition rates and detailed balance. However, the two-level case studied here is not 
the normal semiconductor situation which involves a two-band system and interband 
transitions. Still, one of us [23] has shown that one can go from the two-level to the 
two-band case: an assembly of an infinite number of two-level system is equivalent to 
a two-band system, and the complete diode equation can be retrieved in this way. 

5. Conclusion 

In this paper the solar-cell theory of efficiency and current-voltage relations has been 
generalised by including effects which are not normally considered and integrating 
them into a single formalism. These effects are: (i)  the return fluxes from the sink to 
the converter and from the converter to the pump; (ii) the limited solid angle normally 
subtended by the pump (e.g. the sun) at the converter; and (iii) the possibility of an 
arbitrary distribution function n ,  over frequency. As a result many well known results 
of conventional solar-cell theory appear here in generalised, and more widely appli- 
cable, form. Special attention may be drawn to the following three points. 

(a) The conversion efficiency (3.14), based on figure 2, 

77 = ( 1  - Ts/ T C N  1 - ( Tc/ Tpl41 
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is generalised for converters which are incompletely surrounded by the pump to (3.11) 
and (2.17). Based on figure 1 the upper limit (1.1) 

is similarly generalised to (3.5). It appears in (2.16) for general photon distributions. 
(b) The entropy generation flux (3.18) in the converter 

is generalised similarly in (3.16) and, for general photon distributions, in (2.14). 
(c) The familiar current density-voltage characteristic, which can be written in the 

form (4.12), is generalised in (4.11) and (4.3) for solid angle effects, and additionally 
in (2.18) for arbitrary photon distributions. 

Lastly, we mention the generalised open-circuit conditions (2.20), (3.13) and (4.4). 
Some of the considerations of this paper, e.g. equation (3.12), are relevant for 

thermophotovoltaic conversion, see [27] and references cited therein. In fact, the 
simplified version, 

t 7 - (1 -a ib )~ i - (b ib , )~ i  

obtained on neglecting the a 4  terms, has been used in the design of solar thermal 
engines. This formula has the merit that it still displays the two non-trivial zeros of 
(3.11). 

Appendix. The solar concentration factor C and the coefficient Bpc 

When considering the pump-converter system each point on the surface of the converter 
implies a value of Bj + B,, in (2.6), which value also depends on the concentration 
ratio, C. Here C is the energy input rate p + c  with the concentrator, divided by its 
value without it. For an ideal concentrator this definition is equivalent to the ratio of 
the exit aperture area to the input aperture area, which is a standard definition. With 
the concentrator in position the normal semi-vertical angle subtended by the solar 
disc at the earth is enlarged to 8, say, where the subscript c indicates the presence of 
a concentrator. Integrating over all elements dA of converter area, 

This follows from (2.61, assuming the concentration optics is not selective and delivers 
uniform illumination to the cell. This is a simplifying assumption which would be 
violated by shadowing, etc. For realistic geometries the integrals in (Al)  can be quite 
complicated [24]. 

For a maximal C, C ,  say, (2.10b) shows that 

Bpc(Cm) = BT. 
It follows from the definition (2.20) that 

where (AI) has been used. 
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To obtain a numerical estimate of C,, take a simple hemispherical geometry with 
the converter cell mounted on a mirror so that it does not radiate from the back. This 
corresponds to the usual geometry for a photovoltaic cell. Then by (2.6) 

cos 6 sin 0 d6 = 7~ sin2 BC. 

Using (A4) in ( A l )  with Bo - 16 minutes of arc, i.e. 4.654 x steradians 

From (3.8) 

sin2 BC 1 
sin2 Bo sin’ eo c=- i.e. C,=-- - 46165. 

b:-a4 
i.e. C =- C m  * 

C 
bi =- (1 - a4)  + a 4  

C m  1-a4  
These relations, including (A5), have been used for the numerical values given in the 
captions of figures 3-7. 
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